Question Number	Acceptable Answers	Reject	Mark
1 (a)	Either Anode $H_2 - 2e^{(-)} \rightarrow 2H^+$ (1) Cathode $O_2 + 4H^+ + 4e^{(-)} \rightarrow 2H_2O$ (1) Or Anode $H_2 + 2OH^ 2e^{(-)} \rightarrow 2H_2O$ (1) Cathode $O_2 + 2H_2O + 4e^{(-)} \rightarrow 4OH^-$ (1) Electrons can be on either side of the equation Allow multiples Allow equilibria signs Ignore state symbols		2

Question Number	Acceptable Answers	Reject	Mark
1 (b)	One advantage e.g. quieter, more efficient (energy transfer), no NO_x formed Ignore references to carbon dioxide and / or water as only product	Just easier to control	1

Question Number	Acceptable Answers	Reject	Mark
1 (c)	Ethanol can be obtained from biomass / plants / fermentation / ethanol is a bio fuel (1)		3
	hydrogen from (electrolysis of) water using a non-fossil source of energy (1)		
	these are renewable / fossil fuels are a finite resource (1)		
	Allow for third mark so less burning/use of fossil fuels hence lower carbon emissions / less impact on greenhouse effect		

Question Number	Acceptable Answers	Reject	Mark
2 (a)(i)	Copper: 0 to +2/2+/2*/II/2 (1) Nitrogen: +5/5+/5*/V/5 to +4/4+/4*/IV/4 (1)		2

Question Acceptable Answer Number	'S	Reject	Mark
2(a)(ii) $Cu \rightarrow Cu^{2+} + 2e^{(-)}$ $Cu - 2e^{(-)} \rightarrow Cu^{2+}$ $Cu[(H_2O)_6]^{2+} \text{ OK if } 6$ $NO_3^- + 2H^+ + e^{(-)} \rightarrow 0R$ $2NO_3^- + 4H^+ + 2e^{(-)}$ $2NO_3^- + 4H^+ + 2e^{(-)}$ Ignore the full equal	waters shown on l.h.s. $NO_2 + H_2O$ $A \rightarrow 2NO_2 + 2H_2O$ (1) $A \rightarrow N_2O_4 + 2H_2O$ (1) Pation if it is given as well witten as reverse of above		2

Question Number	Acceptable Answers	Reject	Mark
2(a)(iii)	(electrode potential) values are for standard conditions (1)		2
	nitric acid is concentrated / not 1 mol dm ⁻³ / not 1 M (1)	NO ₃ - are not 1 mol dm ⁻³	
	Allow temperature not stated for second mark	Any reference to loss of NO ₂	

Question Number	Acceptable Answers	Reject	Mark
2(b)(i)	initially a (pale/light) blue precipitate (1)		2
	Allow blue solid		
	Ignore white precipitate	Any colour (athor than	
	(re-dissolves in excess to form) a (deep) blue solution (1) Stand alone mark	Any colour (other than blue) precipitate in blue solution	
	Accept any shade of blue except greenish-blue	Jordan	

Question Number	Acceptable Answers	Reject	Mark
2(b)(ii)	$Cu^{2+}(aq) + 2OH^{-}(aq) \rightarrow Cu(OH)_{2}(s)$ (1)		3
	$Zn^{2+}(aq) + 2OH^{-}(aq) \rightarrow Zn(OH)_{2}(s)$ (1)		
	$Zn(OH)_2(s) + 2OH^-(aq) \rightarrow Zn(OH)_4^{2-}(aq)$ (1)		
	If two previous equations combined correctly then (1) only : $Zn^{2^+} + 4OH^- \rightarrow Zn(OH)_4^{2^-}$		
	Allow $Zn(OH)_2(s) + 2OH^-(aq) \rightarrow ZnO_2^{2-}(aq) + 2H_2O(l)$		
	OR		
	$Zn(OH)_2(s) + 4OH^-(aq) \rightarrow Zn(OH)_6^{4-}(aq)$		
	OR		
	equivalent non-ionic equations, including those with Zn^{2^+} + 2NaOH etc		
	OR		
	Correct balanced equations starting with hexaqua or tetraqua cations		
	ALLOW the hydroxides to be shown as e.g. $Zn(OH)_2(H_2O)_4$ (s) provided that the whole equation balances.		
	Penalise missing /incorrect state symbols on product once only. Ignore other state symbols		

Question Number	Acceptable Answers	Reject	Mark
2(b)(iii) QWC	First 2 marks: zinc hydroxide/oxide amphoteric because it reacts with alkali (to give a solution of a zincate) (1) and reacts with acid (to give a salt) (1) zinc hydroxide is / acts as both an acid and an	Reference to zinc ions or zinc metal	3
	alkali - scores (1) only Third mark: hexaquazinc or hydrated zinc ions exchanged water for ammonia or other named ligand (1) OR	Do not allow deprotonation	
	$Zn(H_2O)_6^{2+} + 4NH_3 \rightarrow etc$ (1) Allow any number of ammonias from 1 to 6 Allow balanced equations, ionic or full. Ligand exchange reaction must start with a complex ion		
	Note: If zinc mentioned initially but equation refers to a correct compound then credit should be given		
	If equations wrong but words are correct then ignore equations		

Question Number	Acceptable Answers	Reject	Mark
2(c)(i)	$I_2 + 2S_2O_3^{2-} \rightarrow 2I^- + S_4O_6^{2-}$	Non-ionic equation.	1
	Ignore state symbols even if wrong.		

QWC Amount thiosulphate $= 0.0331 \text{ dm}^{3} \times 0.1 \text{ mol dm}^{-3}$ $= 0.00331 \text{ mol (1)}$ $= \text{amount of copper(II) ions in 25 cm}^{3} \text{ portion}$	Question Number	Acceptable Answers	Reject	Mark
<pre>.: amount Cu = 10 x 0.00331 = 0.0331 mol in total (1) .: mass Cu = 0.0331 mol x 63.5 g mol⁻¹ (1)</pre>	2(c)(ii)	= 0.0331 dm³ x 0.1 mol dm⁻³ = 0.00331 mol (1) = amount of copper(II) ions in 25 cm³ portion (1) ∴ amount Cu = 10 x 0.00331 = 0.0331 mol in total (1) ∴ mass Cu = 0.0331 mol x 63.5 g mol⁻¹ (1) = 2.102 g ∴ % copper = (2.102 x 100) ÷ 3.00 (1) = 70.1% (1) to 3 s.f. only Mark consequentially but if % > 100 then (-1) If equation in (i) is incorrect but used correctly in part (ii) then all marks can be scored unless answer > 100% Correct answer can score 6 marks irrespective of the stoichiometry of the equation in (c)(i) If candidates uses 64 for molar mass of Cu final	70.06 or 70.0	6

Question Number	Acceptable Answers	Reject	Mark
2(c)(iii)	some reagent used to fill the jet (which does not react with the iodine solution) and so the titre is too high (1) and hence the percentage value would be too high (1) Allow only if the titre is said to be high If the titre is thought to be too low then allow percentage value too low for 2nd mark (1)		2

Question Number	Acceptable Answers	Reject	Mark
3(a)	$3d^34s^2 \text{ OR } 4s^23d^3$ $3d^54s^1 \text{ OR } 4s^13d^5$		1
	both must be correct.		
	ALLOW Electron numbers could be on the line or as subscripts IGNORE case of letters		

Question Number	Acceptable Answers	Reject	Mark
3(b)(i)	Variable/varying/different/several/more than one oxidation state /number (1)	Each metal has a different oxidation number	2
	Complex (ion formation) (1)	Ligand exchange	
	Treat Physical properties (if correct) including catalytic activity as neutral		

Question Number	Acceptable Answers	Reject	Mark
3(b)(ii)	The following metals scores (2) marks with correct E value: Mg 1.96, Ce 1.92, U 1.39, Al 1.25, Mn 0.78, V 0.77, Zn 0.35	All other metals 0/2	2
	NOTE: Positive sign/unit not needed, but penalise negative value		
	The following metals score (1) mark with correct E value: Li 2.62, Rb 2.52, K 2.51, Ca 2.46, Na 2.30, Cr 0.33, Fe 0.03		
	NOTE: Positive sign/unit not needed, but penalise negative value		

Question		Reject	Mark
Number	Acceptable Answers		
3(b)(iii)	Not a redox process Chromate and dichromate both the same/no change in oxidation number (1)		2
	contain Cr(VI) 6/6+ (1)		
	Mark independently		
	OR		
	Not redox and both contain Cr(VI) 6/6+ (2)		

Question Number	Acceptable Answers	Reject	Mark
3(b)(iv)	Forms two (dative/covalent) bonds/has two lone pairs (to the Transition Metal/ion) OR	`to the molecule'	1
	donates two pairs of electrons (to the Transition Metal/ion) Check answer to (v) if mark not awarded here		

Question Number	Acceptable Answers	Reject	Mark
3(b)(v)	Any two from Both have two nitrogen atoms with lone pairs or implied (1) or Far enough apart/longer chain in between in en (but not in hydrazine)/too close in	N=N, or triple bond in hydrazine max 1 or if implies only en has lone pairs max 1	2
	hydrazine/hydrazine is too short/not as long (1) or		
	Dative bonds/lone pairs too close/repel in hydrazine (1) OR for two marks		
	Forms 5-membered ring (with en with no angle strain/stable) (2) or Bond angles too acute/too much ring strain in hydrazine (2)		
	Mark for iv can be awarded here.		

Question Number	Acceptable Answers	Reject	Mark
3(c)(i)	- 0.41 (V)		1
	+1.33 (V)		
	Both answers needed, with number and sign, for 1 mark		
	IGNORE additional words		

Question Number	Acceptable Answers		Reject	Mark
*3(c)(ii)	Combines the equations to obta	in		4
QWC	$8Cr^{3+} + 7H_2O \rightarrow 6Cr^{2+} + Cr_2O_7^{2-} + 14H^+$			
	ALLOW 6Cr ³⁺ + 2Cr ³⁺ instead or 8Cr ³⁺	f	1 max for the equation if	
	IGNORE state symbols even if wrong		electrons are shown balanced or unbalanced	
	species (1), balance (1)			
	$E_{\text{reaction}}^{\circ} = -1.74V$	(1)		
	So not feasible on condition of negative value	(1)		
	OR			
	$6Cr^{2+} + Cr_2O_7^{2-} + 14H^+ \rightarrow 8Cr^{3+} - 7H_2O$	l		
	If fully correct	(1)		
	$E^{\circ}_{\text{reaction}} = + 1.74V$	(1)		
	Disproportionation not feasib condition of positive value but reject 'reaction is spontaneous'			
	Other wrong equations			
	IF Cr ₂ O ₇ ²⁻ or Cr ²⁺ on left			
	Then + 1.74 V	(1)		
	If Cr ³⁺ alone on the left			
	Then -1.74 V	(1)		
	and reaction not feasible	(1)		